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Abstract

Cylindrical shells find wide applications in many engineering fields. Free vibration analysis of cylindrical
shells filled with fluid has been dealt using finite element approach for both structure and fluid domain or
using finite element for structure and Bessel function approach for fluid. The present paper deals with a
novel method on the usage of polynomial functions for fluid domain in contrast to the usual Bessel function
approach. A semi-analytical finite element approach has been used to discretise the shell structure. The fluid
domain has been analysed by using polynomial functions instead of Bessel function. The study has been
carried out for conventional shells as well as viscoelastic shells. The present study obviates necessity of
limiting the studies to certain boundary conditions. The results of both frequency and damping corroborate
well with those found in literature.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Frequency analysis of fluid-filled cylindrical shells has been of great interest and a challenging
task. In literature, fluid-filled cylindrical shells have been analysed for their vibratory behaviour
either by using finite element or by boundary solution technique. The vibration behaviour of
conventional plates and shells have been analysed widely by using the concept of polynomial or
trigonometric functions for displacement satisfying the appropriate boundary conditions. Haroun
see front matter r 2005 Elsevier Ltd. All rights reserved.
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[1] has carried out earthquake analysis by using Bessel function approach for fluid domain and
finite element method for structure. However, his studies were limited to axial and first
circumferential modes. Ramasamy and Ganesan [2] have carried out studies on fluid-filled
viscoelastic shells by using semi-analytical method. Amabili [3] has studied fluid-filled shells by
experimental results and along with closed-form solutions. In his method, both structure and fluid
domain are treated by using boundary solution technique. Such an approach needs to identify set
of trail functions, which satifies wave equation as well as boundary conditions. Amabili [4] studied
the free flexural vibrations of a partially fluid-loaded simply supported circular cylindrical shell
for various wet angles. The fluid is assumed to be inviscid along with a free surface parallel to the
shell axis. The presence of either external or internal fluid is studied for both compressible and
incompressible cases using the virtual added mass approach. The present studies are of great
importance considering the fact that the literature on damping characteristics of horizontal fluid-
filled cylindrical shells is sparse and studies are limited to conventional cylindrical shells.
In the present study instead of using the above-said methodologies, a polynomial is chosen to

represent the variation of pressure along the radial direction. The fluid stiffness matrix and
interaction matrix are evaluated from which the added mass of the system is deduced. From
literature it is found that such an approach for fluid domain has not been attempted for cylindrical
shells.
2. Structural finite element formulation for conventional shell

In the present paper, cylindrical shells are analysed using semi-analytical finite element
approach and polynomial function approach for fluid domain. The following sections describes
the methodology.

2.1. Three-noded axisymmetric shell element

A typical finite element discretisation of mid-surface of the cylindrical shell using 3-node
quadratic line elements is shown in Fig. 1. In the present study for structral problem finite element
developed by Ramalingeswarao and Ganesan [5] is made use of.
The element is based on first-order shear deformation theory. It is assumed that the normal to

the reference surface before deformation remains the same even after deformation. The normal
strain is neglected. The thickness is assumed to be small compared to its radius of curvature of the
shell and the normal does not undergo any strain.
Fig. 2 shows a schematic of the 3-noded axisymmetric shell element.
Each node of the element has 5-degrees of freedom, viz., u, v, w, cs, cy. The displacement field

for the shell is expressed as

Uðs; y; zÞ ¼ uþ zcs; V ðs; y; zÞ ¼ vþ zcy; W ðs; y; zÞ ¼ wðs; yÞ. (1)

The stresses in the element are

fsg ¼ fsss syy tyz tsz tsyg
T (2)

and the corresponding strain–displacement are given by Rao and Ganesan [5].
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Fig. 2. Three-noded axisymmetric shell element.
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Fig. 1. Finite element descretisation of cylindrical shell.
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The shape functions for the 3-noded shell element are as follows:

c1 ¼
1
2
ðx2 � xÞ; c2 ¼ ð1� x2Þ; c3 ¼

1
2
ðx2 þ xÞ. (3)

In the semi-analytical approach, the displacements and rotations of any point in the element are
expressed in terms of the nodal displacements and rotations as follows:

u ¼
X1
n¼0

un cos ny; v ¼
X1
n¼0

vn sin ny; w ¼
X1
n¼0

wn cos ny,

a ¼
X1
n¼0

an cos ny; b ¼
X1
n¼0

bn sin ny, ð4Þ

where ‘n’ denotes the circumferential mode number.
For the nth mode the mass and stiffness matrices are given by

½ke� ¼

Z
Area

½B�T½D�½B�r dy ds; ½me� ¼ r
Z
Vol

½c�T½c�r dy dr ds; (5)

where [B] is the strain-displacement matrix, [D] is the stress–strain matrix with thickness taken
into account, {c} the matrix of shape function.
3. Finite element formulation of constrained layer shell element

Ramasamy and Ganesan [2] have developed a general shell finite element for viscoelastic shells
based on the displacement field proposed by Wilkins et al. [6]. Fig. 3 shows the schematic of the
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Fig. 3. Schematics of a constrained viscoelastic layer.
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viscoelastic shell structure, consisting of a core viscoelastic layer sandwiched between two facing
layers. The extreme layers of the shell are called facings, and their individual thicknesses are
denoted by tf. The central portion of the shell is constrained viscoelastic layer which is called core
and the thickness of the same is denoted by tc.
For the core layer the displacement relations are assumed to be

uc ¼ uo þ zcs; vc ¼ vo þ zcy; wc ¼ wo, (6)

where uc, vc and wc are the total displacements in the s-, y-, and z-directions and are defined in
terms of the middle surface displacements uo, vo and wo and the angles, cs and cy, are rotations of
normal to the middle surface in the meridional and circumferential directions. For the core these
angles are denoted by cs, cy and for the facings the angles are denoted as fs and fy.
The displacement relations for outer and inner facing are, respectively,

ufo; ufi ¼ uo � hcs þ ðz� hÞfs; vfo; vfi ¼ vo � hcy þ ðz� hÞfy; wfo;wfi ¼ wo. (7)

Here ‘z’ denotes the distance from the middle surface of the shell, ‘h’ is half the core thickness and
R is the radius of the shell with respect to the axis. The strain–displacement relations for the core,
inner and outer facings are given by Ramasamy and Ganesan [2].
4. Fluid formulation

Wave equation for incompressible fluid in terms of pressure is given by

q2p
qr2
þ

1

r2
q2p

qy2
þ

q2p
qz2
¼ 0. (8)

In general, the series solution can be adapted to solve this equation. From wave equation, the
variation form can be deduced and the following equations for stiffness and interaction matrix
can be deduced.
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The variational form can be used to derive the elemental fluid stiffness matrix.

½he� ¼

Z
vol

q½N̄�T

qr

q½N̄�
qr
þ

1

r2
q½N̄�T

qy
q½N̄�
qy
þ

q½N̄�T

qz

q½N̄�
qz

� �
r dr dy dz,

where N is the shape function of the fluid domain.
The liquid adjacent to the wall of the elastic shell, r ¼ R must move radially with the same

velocity as the shell

qp

qr
ðR; y; z; tÞ ¼ �r

q2w
qt2
ðy; z; tÞ, (9)

where wðy; z; tÞ is the shell radial displacement and r is density of liquid.
By using the variational form of Eq. (9) the following interaction matix is derived:

½se� ¼

Z
A

½N̄�T½Nstr� dðAinterÞ, (10)

where Ainter represents the area of interaction and [Nstr] corresponds to shape function pertaining
to normal to shell displacement.
Once a set of trail functions, N̄ðr; y; zÞ which satisfy the boundary condition, are identified, it is

possible to evaluate the above matrices and get stiffness and interaction matrices. Once elemental
stiffness and interaction matrices are calculated, they will be assembled to evaluate the fluid
stiffness matrix [H] and fluid interaction matrix [S] and added mass matrix is calculated. In the
present study, trail functions chosen in the z-direction as well as in y-direction are same as that
used in the Bessel function approach.

N̄ðr; y; zÞ ¼
XI

i

X4
j¼1

Aji:FjðrÞ cosðaizÞ cosðnyÞ; (11)

where

ai ¼
ð2i � 1Þp

2H
and i ¼ 1; 2 . . . I .

The following boundary conditions are to be satisfied while choosing Fj(r):

p ¼ 0 when r ¼ 0; pa0 when r ¼ R;
qp

qr
a0 when r ¼ R. (12)

The series (r/a)n will satisfy the above boundary condition for any n. In the present study, n ¼ 1, 2,
3 and 4 polynomial function have been chosen to represent Fj(r). In addition, 10 axial modes have
been made use of in present study.
A computer program is developed to find stiffness matrix of the fluid and the interaction matrix

of the fluid. The matrices will become decoupled in y-direction.
After calculating stiffness and interaction matrices added mass is calculated and added to

structral mass matrix to find eigenvalues of fluid-filled cylindrical shell.
The added mass is calculated by the following equation:

½Ma� ¼ ½S�
T½H��1½S�, (13)

where [H], [S] are global fluid stiffness and interaction matrices.
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ð½Ms� þ ½Ma�Þf €qg þ ½Ks� fqg ¼ f0g, (14)

where ADM is an added mass matrix due to the effect of the liquid. The matrix [ADM] is
symmetric and partially complete. Eq. (14) can be reduced to the standard eigenvalue problem as
shown below which will be solved for evaluating eigenvalues.

½KS� � ½½MS� þ ½ADM��
� �

¼ 0. (15)
5. Results and discussions

A computer programme developed to evaluate the natural frequencies of conventional shells by
using polynomial function has been used to study short and tall shells and that are dealt by
Amabili [3]. In the present study three shells whose dimensions are R ¼ 18.29m, L ¼ 12.2m,
Table 1

Comparison of natural frequencies (Hz) for a clamped–free, mild steel shell of dimensions R ¼ 18.29m, L ¼ 12.2m,

t ¼ 0.0254m

Circumferential mode number Ramasamy and Ganesan [2] Polynomial approach

1 6.34 6.28

2 5.27 5.25

3 4.19 4.19

4 3.35 3.36

5 2.72 2.73

6 2.24 2.26

7 1.88 1.90

8 1.62 1.65

9 1.45 1.48

10 1.35 1.40

Table 2

Comparison of natural frequencies (Hz) for a clamped–free, mild steel shell of dimensions R ¼ 7.34m, L ¼ 21.96m,

t ¼ 0.0254m

Circumferential mode number Ramasamy and Ganesan [2] Polynomial approach

1 5.41 5.35

2 2.51 2.47

3 1.45 1.43

4 1.10 1.10

5 1.25 1.24

6 1.72 1.72

7 2.42 2.42

8 3.28 3.29

9 4.30 4.33

10 5.49 5.56



ARTICLE IN PRESS

B.V. Krishna, N. Ganesan / Journal of Sound and Vibration 291 (2006) 1221–1228 1227
t ¼ 0.0254m (short shell), R ¼ 7.32m, L ¼ 21.96m, t ¼ 0.0254m (long shell) and R ¼ 0.175m,
L ¼ 0.664m, t ¼ 0.001m (shell dimension used by Amabili [3]) considered. Tables 1–3 compare
the results obtained by polynomial approach and semi-analytical method suggested by Ramasamy
and Ganesan [2]. It is observed that there is good correlation.
In order to further validate the polynomial function approach the study has been carried out on

constrained layered composite shell. The study has been carried out for fibre orientation 01 and
901. Tables 4 and 5 compare the frequencies and damping values obtained by polynomial
approach with those of Ramasamy [2]. It is seen from tables that there is a good correlation on the
frequencies and damping values obtained by both the approaches.
Table 3

Comparison of natural frequencies (Hz) for a simply supported, mild steel shell of dimensions R ¼ 0.175m,

L ¼ 0.664m, t ¼ 0.001m

Circumferential mode number Polynomial approach Amabili [7] experiments Amabili [7] theory

1 89.96 92 91.0

2 101.10 104 102.8

3 116.70 119 117.2

4 139.60 147 141

5 196.50 206 197

6 197.60
7 268.60
8 355.60
9 405.50
10 457.60

Table 4

Comparison of natural frequencies (Hz) for a clamped–free, Glass for Epoxy shell with fibre angle 01 of dimensions

R ¼ 18.29m, L ¼ 12.2m, t ¼ 0.0254m

Circumferential mode number Polynomial approach Ramasamy and Ganesan [2]

Frequency (Hz) Loss factor Frequency (Hz) Loss factor

tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1

1 1.34 0.0034 1.34 0.0031

2 1.20 0.0021 1.21 0.0020

3 1.02 0.0016 1.01 0.0015

4 0.87 0.0015 0.86 0.0014

5 0.76 0.0016 0.75 0.0015

6 0.66 0.0017 0.65 0.0016

7 0.59 0.0020 0.58 0.0018

8 0.54 0.0024 0.53 0.0022

9 0.51 0.0032 0.49 0.0029

10 0.50 0.0045 0.48 0.0041
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Table 5

Comparison of natural frequencies (Hz) for a clamped–free, glass for epoxy shell with fibre angle 901 of dimensions

R ¼ 18.29m, L ¼ 12.2m, t ¼ 0.0254m

Circumferential mode number Polynomial approach Ramasamy and Ganesan [2]

Frequency (Hz) Loss factor Frequency (Hz) Loss factor

tc/t ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1

1 2.18 0.0004 2.17 0.0004

2 1.45 0.0005 1.45 0.0004

3 1.05 0.0005 1.04 0.0005

4 0.80 0.0006 0.79 0.0006

5 0.64 0.0009 0.63 0.0008

6 0.53 0.0019 0.52 0.0017

7 0.48 0.0051 0.47 0.0046

8 0.47 0.0114 0.46 0.0103

9 0.51 0.0200 0.50 0.0181

10 0.59 0.0289 0.57 0.0263
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6. Conclusions

In the present study, use of the novel polynomial approach to characterise fluid domain has
been proposed. Numerical results on the natural frequencies obtained by polynomial approach
compared very well with the other procedures. It is felt that polynomial approach will be more
elegant and general than Bessel function approach since in the later approach Bessel function
values have to be evaluated depending on shell dimensions.
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